LOYOLA COLLEGE (AUTONOMOUS), CHENNAI –	600 034	
M.Sc. DEGREE EXAMINATION – MATHEMATICS		
SECOND SEMESTER – APRIL 2023		
PMT 2501 – ALGEBRA		
Date: 09-05-2023 Dept. No. Time: 01:00 PM - 04:00 PM	Max. : 100 Marks	
Answer ALL questions:		
1. a. If $O(G) = p^2$ where p is a prime number then prove that G is abelian. [OR]	(5)	
b. Write conjugate classes of S_3 .	(5)	
c. State and prove second and third part of Syllow's theorems. [OR]	(15)	
d. i) State and prove Cauchy's theorem. ii) Let G be a group and $a \in G$, prove that $N(a)$ is a subgroup of G.	(10 + 5)	
2. a. Define internal direct product and give an example.	(5)	
b. State and prove division algorithm.	(5)	
c. Discuss about the field $\frac{Q[x]}{x^2-2}$. [OR]	(15)	
d. i) Prove that product of two primitive polynomial is primitive. ii) If $f(x)$ and $g(x)$ are two nonzero polynomials, then prove that		
deg(f(x)g(x)) = deg(f(x) + deg(gx)).	(10 + 5)	
3. a. Find the degree of $\sqrt{2} + \sqrt{3}$ over Q.	(5)	
b. Show that $x^5 + 6x^4 + 9x^4 - 12x^2 + 30x + 3$ is irreducible over rationals.	(5)	
c. If L is the finite extension of K and K is the finite extension of F then prove extension of F.	that L is the finite (15)	
[OR] d. Show that a polynomial of degree <i>n</i> can have at most <i>n</i> roots in any extensio	m field. (15)	
4. a. If a, b in K are algebraic over F, then prove that $a\pm b$, ab and a/b (if $b\neq 0$) are	algebraic over F. (5)	
[OR]	~ - ``	
b. Define Galois group and give an example.	(5)	
c. The element $a \in K$ is said to be algebraic over F if and only if F(a) is a finite	e extension over F. (15)	
[OR] d. State and prove fundamental theorem of Galois Theory.	(15)	

5.	a. Give an example of a finite field with order 27.	(5)
	b. Show that any finite field has p^m elements where p is a prime number.	(5)
	c. Prove that the multiplicative group of non-zero elements of a finite field is cyclic.	(15)
	[OR] d. Prove that any finite division ring is necessarily a commutative field.	(15)

\$\$\$\$\$\$\$