LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS
 SECOND SEMESTER - APRIL 2023

PMT 2501 - ALGEBRA

Date: 09-05-2023
Time: 01:00 PM - 04:00 PM
Dept. No.

Answer ALL questions:

1. a. If $O(G)=p^{2}$ where p is a prime number then prove that G is abelian.
[OR]
b. Write conjugate classes of S_{3}.
c. State and prove second and third part of Syllow's theorems.
[OR]
d. i) State and prove Cauchy's theorem.
ii) Let G be a group and $a \in G$, prove that $N(a)$ is a subgroup of G.
2. a. Define internal direct product and give an example.
[OR]
b. State and prove division algorithm.
c. Discuss about the field $\frac{Q[x]}{x^{2}-2}$.
[OR]
d. i) Prove that product of two primitive polynomial is primitive.
ii) If $f(x)$ and $g(x)$ are two nonzero polynomials, then prove that $\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x)+\operatorname{deg}(g x))$.
3. a. Find the degree of $\sqrt{2}+\sqrt{3}$ over Q .
[OR]
b. Show that $x^{5}+6 x^{4}+9 x^{4}-12 x^{2}+30 x+3$ is irreducible over rationals.
c. If L is the finite extension of K and K is the finite extension of F then prove that L is the finite extension of F.
[OR]
d. Show that a polynomial of degree n can have at most n roots in any extension field.
4. a. If a, b in K are algebraic over F, then prove that $a \pm b, a b$ and a / b (if $b \neq 0$) are algebraic over F.
[OR]
b. Define Galois group and give an example.
c. The element $a \in K$ is said to be algebraic over F if and only if $F(a)$ is a finite extension over F.
[OR]
d. State and prove fundamental theorem of Galois Theory.
5. a. Give an example of a finite field with order 27.
b. Show that any finite field has p^{m} elements where p is a prime number.
c. Prove that the multiplicative group of non-zero elements of a finite field is cyclic. [OR]
d. Prove that any finite division ring is necessarily a commutative field.
